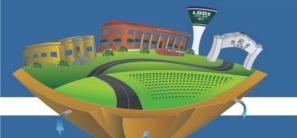
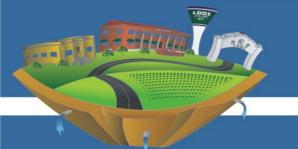
General Plan Utilities (Public Works)

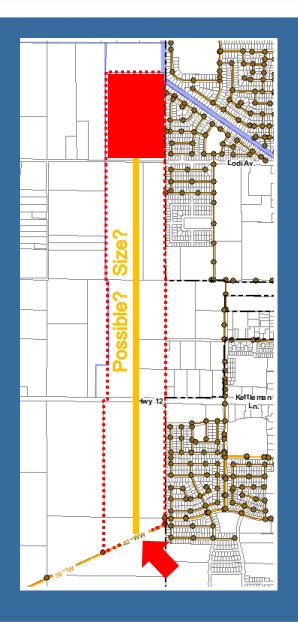


Workshop Series: Part 2a of 3

Part 1: Growth & The General Plan June 3, 2025


Part 2: Utilities & infrastructure June 10, 2025

Part 3: Funding Options & Next Steps: June 17, 2025


Overview

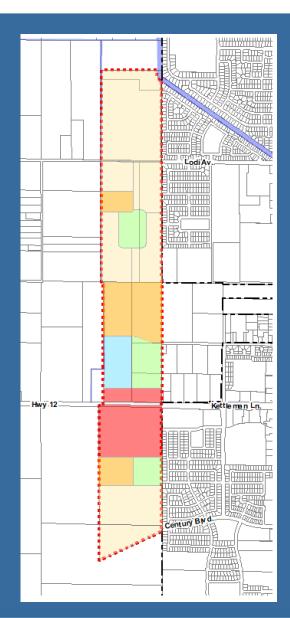
- What are Utility Master Plans?
 - Water
 - Wastewater (Sewer)
 - Storm Drainage
- Current Master Plans (2012)
 - Already Developed
 - Different Than Master Plan
- Potential Updates
- Questions (Each Utility)

What are Utility Master Plans?

- High-level look at how to serve future development
- Updated with the General Plan
 - Water: Production, Distribution
 - Wastewater (WW): Collection, Treatment
 - Storm: Collection, Storage/Discharge
- Other possible options to Serve?
 - South Wastewater Trunk Line
 - Storm Drainage Basins
- Quick WW Master Plan Example

Determine Flow

- General Plan Land Uses
- Design Standards


2.200 Design Flow

Wastewater lines shall be designed on a peak flow basis. Design peak flows shall be estimated by applying the appropriate peaking factor to the average flow.

For analysis of existing lines or where existing land use is higher than the zoning, flow shall be calculated based on an average sewage flow of 70 gallons per capita per day with a population of 2.85 capita per single family dwelling unit and 2.0 capita per multiple family or high density dwelling unit (see table below).

For lines serving new areas or where existing land use is lower than the zoning, the City zoning map and/or general plan shall be used to estimate average flow. The following table summarizes these criteria:

Zoning	Land Use	Pers/Unit	Units/acre	Pers/acre	Flow	
LDR	Low Density Residential	2.85	6	17.1	0.00186 cfs/acre	
MDR	Medium Density Residential	2.4	15	36	0.0039 cfs/acre	
HDR	High Density Residential	2	25	50	0.0054 cfs/acre	
С	Commercial	-	-	-	0.0031 cfs/acre	
Ind	Industrial	-	-	-	0.0023 cfs/acre	
					0.000034	
n/a	School	-	-	-	cfs/student	

Minimum Slope (ft/ft)

0.0048

0.0033

0.0014

Line 1 Sizing

Entire Section Areas

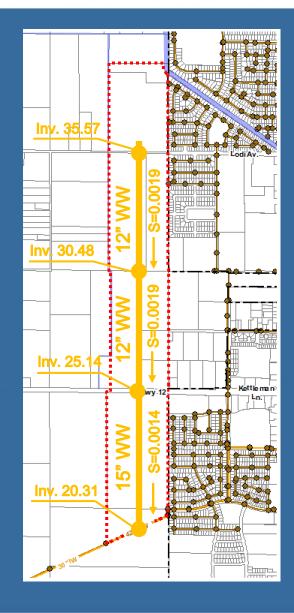
• LDR: 163.2 Ac

• MDR: 53.7 Ac

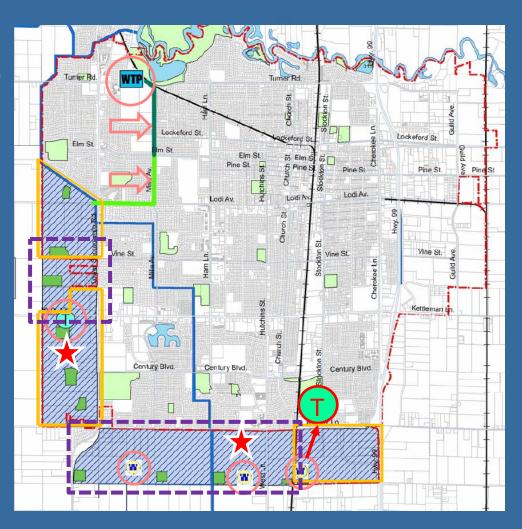
• C: 45.3 Ac

• PQP (School): 805 Students*

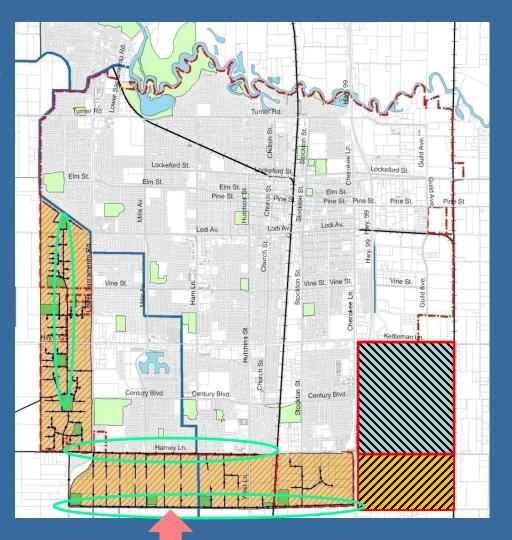
*Assuming 50 Students / Ac

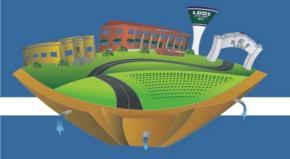

Peak Flows								
Use	Area /	Flow cfs / Acre (Un)	Total Avg. cfs	Pop.	Total Pop	Peak Factor	Peak Flows (CFS)	Total (CFS)
С	45.3	0.003094	0.14018	N/A		3.2	0.449	
	0	0.002321	0.00000	N/A		2.8	0.000	
HDR-Ac	0	0.005415	0.00000	0			0.000	
HDR U	0	0.0002166	0.00000	0			0.000	
MDR-AC	53.7	0.003899	0.20938	1,933			0.628	2.066
MDR U	Û	0.0002599	0.00000	0	4,724	3.0	0.000	2.000
LDR-AC	163.2	0.001852	0.30225	2,791			0.907	
LDR-U	0	0.0003087	0.00000	0]		0.000	
Sonior Care	0	0.0001083	0.00000	0]		0.000	
School (st)	805	0.000034	0.02740	N/A		3	0.082	

WW Master Plan Example


- Downstream Capacity
- Treatment Plant Capacity
- All by Gravity? Pump Station?

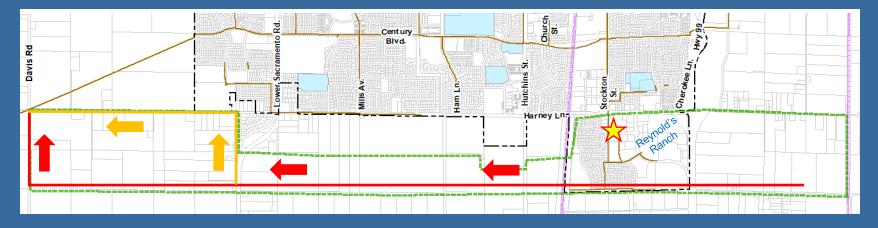
Current Master Plans (2012)

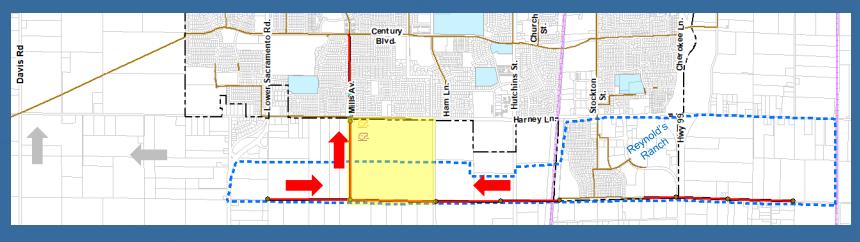

- Water
 - Westside, Southwest, South
 - Major Components
 - Developed
 - Undeveloped Areas
 - "F" Area
 - South
 - Changed
- Developer Impact Fees
- Water Questions?



Current Master Plans (2012)

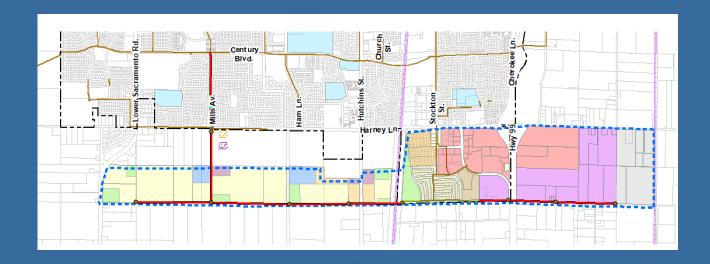
- Wastewater (2018 Amend)
 - Same Study Area as Water
 - Included in Existing Trunk Lines
 - Portion of the Eastside Industrial
 - Major Components
 - Westgate Trunk Line
 - Harney Trunk Line
 - South Wastewater Trunk Line
 - Changed
 - South Wastewater Trunk Line (SWTL)

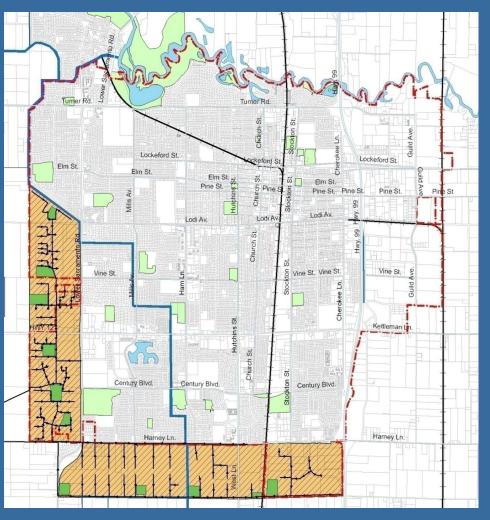

South Wastewater Trunk Line (SWTL)

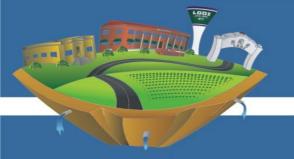

2008

- Reynold's Ranch (RR) / Costco
- Connection @ Harney & Davis
- Gravity System (~5 Miles of Pipe)
- Required 16 Easements
 - Interim Pump Station in Reynolds Ranch
- 2012 MP Adjusted to Lower Sac.

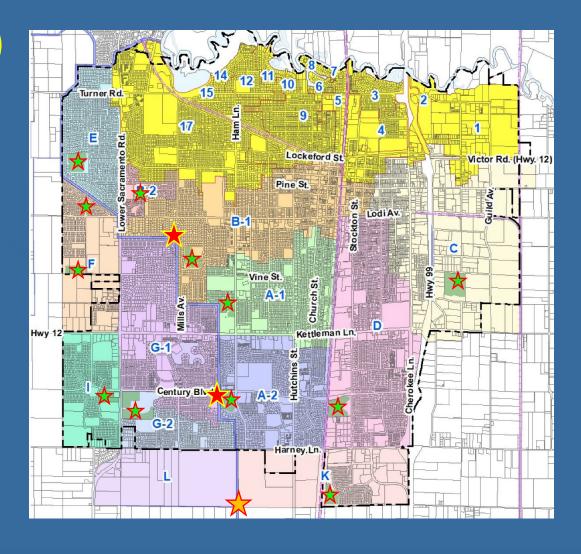
2018 Amendment


- Smaller Boundary
- Pump Station @ Harney & Mills
- Connection @ Mills & Century
- Reduced Overall Cost (~15%)
- Minimal Easements
 - Easier to Develop

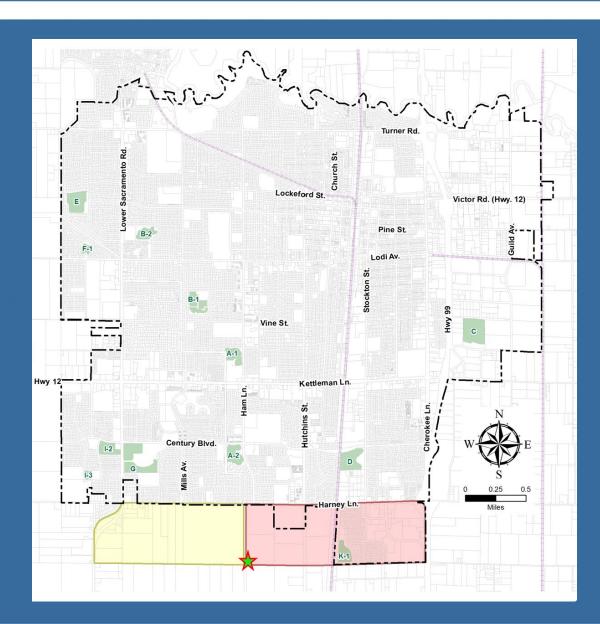




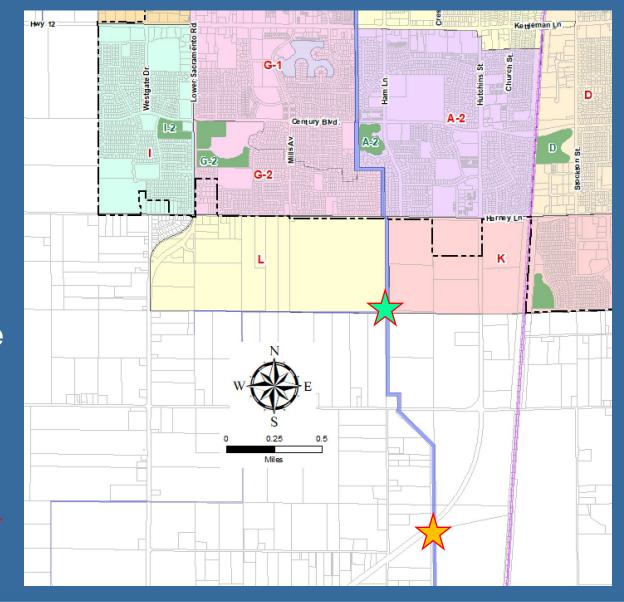
Wastewater Questions?



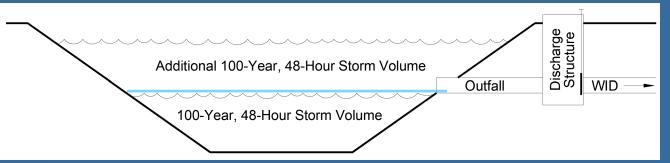
Current Master Plans (2012)


- Storm Drainage
 - 17 River/Lake Outlets (#s)
 - 12 Basins (Letters) ★
 - 2 WID Outlets ★
 - Possible 3rd WID Connection ★
 - Changes Since 2012 MP
 - I-1 & I-2 Combined (I-2)
 - Design Standards Update (2024)
 - Future Basins Larger
 - WID 3rd Connection Requirements

Storm Drainage


- Drainage Basin Basics
 - 100-Year, 48-Hour Rain Event
 - 4.8" of Rain
 - 200% Required without Outlet
- WID Connections
 - Shade Acres PS: 3 Basins
 - Beckman PS(2): 9 Basins
 - Future PS (South): 5 Basins
- WID Discharge Agreement
 - Original: 1921
 - Current: 1993, Expires in 2033
 - 160 CFS Max Discharge (60 Per)

WID Discussions


- WID Concerns
 - Discharge Water Quality
 - Stockton Drinking Water
 - Downstream Capacity
- Potential Solutions
 - Trash Capture Device @ Shade Acres (2015)
 - Pixley Slough Pipe Design
 (2018) Not Practical
 - Previous Location
 - Modified Basin Design and/or Treatment (2024)

WID Discussions

- Modified Basin Design
 - 200% Capacity
 - Outlet @ 100% Level
 - Discharges Rare
 - Bioswale Treatment
 - Alternative Filtration
 - Combination
- Ongoing Discussions w/ WID
- Current Backup Plan = Additional Overflow Storage

Takeaway's

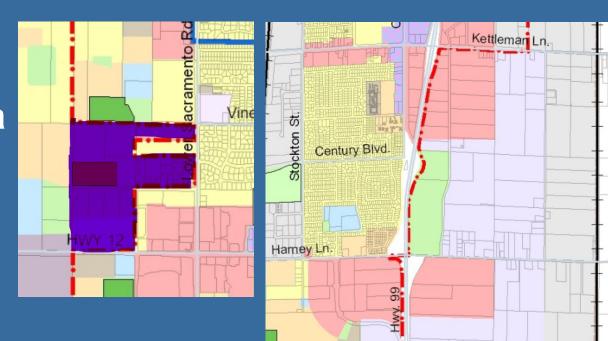
Westside (Include "F") Area

Water: 2012 MP

Wastewater: 2012 MP

• Storm: 2012 MP

South Area


• Water: 2012 MP

Wastewater: 2012 MP/SWTL


Storm: 2012 MP / WID Option / Backup

East Industrial Area

- Water: Need to Study. Likely Well and/or Tank
- Wastewater: Existing & SWTL (s/ Harney)
- Storm: Need to Study. Likely 2 Basins

Water, Wastewater or Storm Drain Questions?

